If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x-7x^2=9
We move all terms to the left:
24x-7x^2-(9)=0
a = -7; b = 24; c = -9;
Δ = b2-4ac
Δ = 242-4·(-7)·(-9)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-18}{2*-7}=\frac{-42}{-14} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+18}{2*-7}=\frac{-6}{-14} =3/7 $
| 3x+2/5=x-1/4 | | 3a+2=—2a—8 | | 30=-4(6x-3 | | 8-3(7-x)+10=2x-7 | | 3(x-5)=8(2-x) | | -168=6(5x+7) | | 3(-4a+5)=111 | | 2-2x-5x=9 | | T÷3-1=11t= | | 7(-6+5m)=-112 | | 88=-(x-5) | | 7m-27=29m= | | x–4=2xx= | | 6b+14=9 | | 8x-5=4x-14 | | 6x+4=6+4(x+1) | | x(x+4)(5-2x)=) | | 3x–4(2x+5)=2x | | 5x-6=8(2-x) | | 0=-16t2+30t+6 | | x^2-4x+1=-4 | | (v-8)(5v+8)=0 | | 4x-70=2x+30 | | 260x+310=2910 | | 4x(x-5)=-36 | | 1/7(14x+7)=-5 | | 8x/2x=80 | | 2x/8x=80 | | 6(3x+10)=168 | | 2+3x=x+26 | | b/4.7-5=11.45 | | 7x+1=31+x |